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1. Introduction

Study of unstable objects in string theory might shed new light in understanding properties

of string theory in time-dependent backgrounds [1 – 6]. Generally speaking, source of in-

stability in these processes is appearance of some tachyonic modes in the spectrum of these

objects. It then makes sense to study them in a field theory which includes those modes. In

this regard, it has been shown by A. Sen that an effective action of the Dirac- Born-Infeld

type proposed in [7 – 10] can capture many properties of the decay of non-BPS Dp-branes

in string theory [2, 3]. This action has been found in [8] by studying the S-matrix element

of one graviton and two tachyons.

Recently, unstable objects have been used to study spontaneous chiral symmetry break-

ing in holographic model of QCD [11 – 13]. In these studies, flavor branes introduced by

placing a set of parallel branes and antibranes on a background dual to a confining color

theory [14]. Detailed study of brane-antibrane system reveals when branes separation is

smaller than the string length scale, the spectrum has two tachyonic modes [15]. The ef-

fective action should then include these modes as they are the most important ones which

rule the dynamics of the system.

The effective action of a DpD̄p-brane in Type IIA(B) theory should be given by some

extension of the DBI action and the WZ terms which include the tachyon fields. The DBI

part may be given by the projection of the effective action of two non-BPS Dp-branes in

Type IIB(A) theory with (−1)FL projection [16]. We are interested in this paper in the

appearance of tachyon, gauge field and the RR field in these actions. These fields appear

in the DBI part as the following [17]:

SDBI = −Tp

∫

dp+1σTr
(

V (T )
√

− det(ηab + 2πα′Fab + 2πα′DaT DbT )
)

, (1.1)
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where Tp is the p-brane tension. The trace in the above action should be completely

symmetric between all matrices of the form Fab,DaT , and individual T of the tachyon

potential. These matrices are

Fab =

(

F
(1)
ab 0

0 F
(2)
ab

)

, DaT =

(

0 DaT

(DaT )∗ 0

)

, T =

(

0 T

T ∗ 0

)

(1.2)

where F
(i)
ab = ∂aA

(i)
b − ∂bA

(i)
a and DaT = ∂aT − i(A

(1)
a − A

(2)
a )T . The tachyon potential

which is consistent with S-matrix element calculations has the following expansion:

V (T ) = 1 + πα′m2T 2 +
1

2
(πα′m2T 2)2 + · · ·

where m2 is the mass squared of tachyon, i.e., m2 = −1/(2α′). The above expansion is

consistent with the potential V (T ) = eπα′m2T 2
which is the tachyon potential of BSFT

[18]. This action has the following expansion:

LDBI=−2Tp − Tp(2πα′)

(

m2|T |2 + DT · (DT )∗ − πα′

2

(

F (1) · F (1) + F (2) · F (2)
)

)

+ · · ·(1.3)

where dots refers to the terms which have more than two fields.

The WZ term describing the coupling of RR field to tachyon and gauge field of brane-

anti-brane is given by [19 – 21]

SWZ = µp

∫

Σ(p+1)

C ∧ STr ei2πα′F (1.4)

where the curvature of the superconnection is defined as:

F = dA− iA ∧A (1.5)

the superconnection is

iA =

(

iA(1) βT ∗

βT iA(2)

)

,

where β is a normalization constant. If one uses the tachyon DBI action (1.1) for describing

the dynamics of the tachyon field then the normalization of tachyon in the WZ action (1.4)

has to be [22]

β =
1

π

√

2 ln(2)

α′
(1.6)

The “supertrace” in (1.4) is defined by

STr

(

A B

C D

)

= Tr A − Tr D .

Using the multiplication rule of the supermatrices [20]
(

A B

C D

)

·
(

A′ B′

C ′ D′

)

=

(

AA′ + (−)c
′

BC ′ AB′ + (−)d
′

BD′

DC ′ + (−)a
′

CA′ DD′ + (−)b
′

CB′

)

(1.7)
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where x′ is 0 if X is an even form or 1 if X is an odd form, one finds that the curvature is

iF =

(

iF (1) − β2|T |2 β(DT )∗

βDT iF (2) − β2|T |2

)

,

where F (i) = 1
2F

(i)
ab dxa∧dxb and DT = [∂aT − i(A

(1)
a −A

(2)
a )T ]dxa. Using the expansion for

the exponential term in the WZ action (1.4), one finds many different terms. The terms

which involve at most three open string fields are the following:

µp(2πα′)C ∧ STr iF = µp(2πα′)Cp−1 ∧ (F (1) − F (2)) (1.8)
µp

2!
(2πα′)2C ∧ STr iF ∧ iF =

µp

2!
(2πα′)2Cp−3 ∧

{

F (1) ∧ F (1) − F (2) ∧ F (2)
}

+Cp−1 ∧
{

−2β2|T |2(F (1) − F (2)) + 2iβ2DT ∧ (DT )∗
}

µp

3!
(2πα′)3C ∧ STr iF ∧ iF ∧ iF =

µp

3!
(2πα′)3Cp−3

{

3iβ2(F (1) + F (2)) ∧ DT ∧ (DT )∗
}

The coupling of one RR field Cp−1, two tachyons and one gauge field in the above terms

can be combined into the following form:

−β2µp(2πα′)2
∫

Σ(p+1)
C(p−1) ∧

{

d(A(1) − A(2))TT ∗ − (A(1) − A(2))d(TT ∗)
}

= −β2µp(2πα′)2
∫

Σp+1
H(p) ∧ (A(1) − A(2))TT ∗ (1.9)

This combination actually appears naturally in the S-matrix element in the string theory

side [22]. It has been shown in [22] that the effective actions (1.1) and (1.4) are consistent

with an expansion of the S-matrix element of one RR, two tachyons and one gauge field.

In the present paper, we would like to show that the expansion found in [22] is in fact a

derivative expansion, i.e., an expansion which is consistent with the derivative expansion

of the field theory of brane-anti-brane sysytem. We will show this by explicitly calculating

the higher derivative terms of the WZ field theory, i.e., (3.10), (3.16), and (3.24).

An outline of the rest of paper is as follows. In the next section, we study the derivative

expansion of the S-matrix element of one RR and two tachyons, and the S-matrix element

of one RR and two gauge fields. We shall find in this section the higher derivative extension

of the coupling in the second line of (1.8) and the coupling in the last term in the third

line of (1.8). In section 3, we study the derivative expansion of the S-matrix element of

one RR, two tachyons and one gauge field. We shall find the higher derivative extension

of the coupling in the last line of (1.8) and the coupling in the first term in the third line

of (1.8). In this section we will also find a class of higher derivative terms, i.e., (3.24)

which has at least four derivatives, hence, they are not higher derivative extension of the

two derivative couplings of the WZ terms. We discuss briefly our results in section 4, and

give a general rule for finding the derivative expansion of any S-matrix element involving

the tachyon fields.

2. Three-point function

The three-point amplitude between one RR field and two tachyons in string theory side is

– 3 –
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given as [19, 22]

AT,T,RR =

(

iµp

4

)

2π
Γ[−2u]

Γ[12 − u]2
Tr (P−H/ (n)Mpγ

a)ka . (2.1)

where u = −(k + k′)2 and k, k′ are the momenta of the tachyons. In the string theory side

we have set α′ = 2. The trace is zero for p 6= n, and for n = p it is

Tr
(

H/ (n)Mpγ
a
)

= ±32

p!
Ha0...ap−1ǫ

a0...ap−1a .

We are going to compare string theory S-matrix elements with field theory S-matrix element

including their coefficients, however, we are not interested in fixing the overall sign of the

amplitudes. Hence, in above and in the rest of equations in this paper, we have payed no

attention to the sign of equations. The trace in (2.1) containing the factor of γ11 ensures

the following results also hold for p > 3 with H(n) ≡ ∗H(10−n) for n ≥ 5. The tachyon

vertex operator in string theory corresponds to the real components of the complex tachyon

of field theory, i.e.,

T =
1√
2
(T1 + iT2) (2.2)

Now if one replaces ka in (2.1) with −k′
a − pa using the conservation of momentum, one

will find that the pa term vanishes using the totally antisymmetric property of ǫa0...ap−1a.

Hence the amplitude (2.1) is antisymmetric under interchanging 1 ↔ 2. This indicates

that only the three-point amplitude between one RR, one T1 and one T2 is non-zero.

The derivative expansion of (2.1) is at u → 0. Using the Maple, one can expand the

prefactor of (2.1) around this point, i.e.,

2π
Γ[−2u]

Γ[12 − u]2
=

−1

u
+

∞
∑

n=0

anuu . (2.3)

where some of the coefficients an are

a0 = 4 ln(2)

a1 =
π2

6
− 8 ln(2)2

a2 = −2

3

(

π2 ln(2) − 3ζ(3) − 16 ln(2)3
)

(2.4)

a3 =
1

120

(

160π2 ln(2)2 + 3π4 − 960ζ(3) ln(2) − 1280 ln(2)4
)

a5 = − 1

90

(

160π2 ln(2)3 + 9π4 ln(2) − 1440ζ(3) ln(2)2 + 30ζ(3)π2 − 768 ln(2)5 − 540ζ(5)
)

It is shown in [19] that the massless pole reproduced by the kinetic term of tachyon and the

WZ coupling in the first line of (1.8). There is no higher power of momenta in the massless

pole, hence, the kinetic term of tachyon and the WZ coupling have no higher derivative

extension. Since the expansion (2.3) is in terms of the powers of p2
a, the other terms in
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(2.3) correspond to the higher derivative corrections of the WZ action. It is easy to check

that the following higher derivative terms reproduce the other terms in (2.3):

2iα′µp

∞
∑

n=0

an

(

α′

2

)n

Cp−1 ∧ (DaDa)
n(DT ∧ DT ∗) (2.5)

The above couplings have on-shell ambiguity, since one can replace T with ∂a∂aT for the

on-shell external tachyon. However, we will show in the next section that the above cou-

plings, with exactly the same coefficients an, appear in the tachyonic pole of the scattering

amplitude of one RR, two tachyons and one gauge field. So there is no on-shell ambiguity

in the above couplings. The above couplings are the higher derivative extension of the

coupling in the second term in the third line of (1.8).

The string theory S-matrix element of one RR and two gauge fields is given by [23, 24]

A ∼ 2
Γ[−2u]

Γ[1 − u]2
K (2.6)

where K is the kinematic factor. Obviously the derivative expansion of this amplitude is

around u → 0. Expansion of the prefactor at this point is

2
Γ[−2u]

Γ[1 − u]2
= −

∞
∑

n=−1

bnun . (2.7)

where some of the coefficients bn are

b−1 = 1

b0 = 0

b1 =
π2

6
b2 = 2ζ(3)

b3 =
19

360
π4 (2.8)

b4 =
1

3

(

ζ(3)π2 + 18ζ(5)
)

b5 =
1

3024

(

55π6 + 6048ζ(3)2
)

In this case actually there is no massless pole at u = 0 as the kinematic factor provides a

compensating factor of u. The amplitude has the following expansion:

A = i
(4π)2µp

4(p − 3)!
fa0a1f ′a2a3εa4···apǫa0···ap

(

∞
∑

n=−1

bnun+1

)

δp,n+2 (2.9)

where fab = i(kaξb − kbξa), f ′
ab = i(k′

aξ
′
b − k′

bξ
′
a) and ε is the polarization of the RR

potential. The above terms are reproduced by the following higher derivative terms

µp

2!
(2πα′)2Cp−3∧

(

∞
∑

n=−1

bn(α′)n+1∂a1 · · · ∂an+1F (1)∧∂a1 · · · ∂an+1F
(1)−

(

F (1)→F (2)
)

)

(2.10)
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We will see in the next section that these couplings, with exactly the same coefficients bn,

appear in the massless pole of the scattering amplitude of one RR, two tachyons and one

gauge field. The above couplings are the higher derivative extension of the coupling in the

second line of (1.8).

3. Four-point function

The S-matrix element of one RR field, two tachyons and one gauge field is given as [22]

AATTC =
iµp

2
√

2π

[

Tr

(

(P−H/ (n)Mp)(k3.γ)(k2.γ)(ξ.γ)

)

Iδp,n+2+Tr

(

(P−H/ (n)Mp)γ
a

)

Jδp,n

×
{

k2a(t + 1/4)(2ξ.k3) + k3a(s + 1/4)(2ξ.k2) − ξa(s + 1/4)(t + 1/4)

}]

(3.1)

where I, J are:

I = 21/2(2)−2(t+s+u)−1π
Γ(−u)Γ(−s + 1/4)Γ(−t + 1/4)Γ(−t − s − u)

Γ(−u − t + 1/4)Γ(−t − s + 1/2)Γ(−s − u + 1/4)

J = 21/2(2)−2(t+s+u+1)π
Γ(−u + 1/2)Γ(−s − 1/4)Γ(−t − 1/4)Γ(−t − s − u − 1/2)

Γ(−u − t + 1/4)Γ(−t − s + 1/2)Γ(−s − u + 1/4)

where the Mandelstam variables are

s = −(k1 + k3)
2, t = −(k1 + k2)

2, u = −(k2 + k3)
2

k1 is momentum of the gauge field and k2, k3 are the momenta of the tachyons. Note that

I, J are symmetric under s ↔ t. The traces in (3.1) are:

Tr

(

H/ (n)Mp(k3.γ)(k2.γ)(ξ.γ)

)

δp,n+2 = ±32

n!
ǫa0···apHa0···ap−3k3ap−2k2ap−1ξap

δp,n+2

Tr

(

H/ (n)Mpγ
a

)

δp,n = ±32

n!
ǫa0···ap−1aHa0···ap−1δp,n (3.2)

Examining the poles of the Gamma functions, one realizes that for the case that p = n+2,

the amplitude has massless pole and infinite tower of massive poles. Whereas for p = n

case, there are tachyon, massless, and infinite tower of massive poles. The tachyon pole in

particular indicates that the kinetic term of the tachyon has no higher derivative extension.

It has been shown in [22] that the leading order term of the amplitude (3.1) expanded

around the following point:

t → −1/4, s → −1/4, u → 0 (3.3)

is consistent with the effective actions (1.1) and (1.4). We would like to find the field theory

couplings which reproduce all terms of the expansion. Let us study each case separately.
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3.1 p = n + 2 case

For p = n + 2, the amplitude is antisymmetric under interchanging 2 ↔ 3, hence the four-

point function between one RR, one gauge field and two T1 or two T2 is zero. The electric

part of the amplitude for one RR, one gauge field, one T1 and one T2 is given by

AAT1T2C = ± 8iµp√
2π(p − 2)!

[

ǫa0···apHa0···ap−3k3ap−2k2ap−1ξap

]

I (3.4)

Note that the amplitude satisfies the Ward identity, i.e., the amplitude vanishes under

replacement ξa → ka
1 .

Expansion of I around (3.3) is

I = π
√

2π

(

−1

u

∞
∑

n=−1

bn(s + t + 1/2)n+1+ (3.5)

+

∞
∑

p,n,m=0

cp,n,mup ((s + 1/4)(t + 1/4))n (s + t + 1/2)m





where the coefficients bn are exactly those that appear in (2.8) and cp,0,0 = ap are those

that appear in (2.4). The constants cp,n,m for some other cases are the following:

c0,0,2 =
2

3
π2 ln(2), c0,1,0 = −14ζ(3), c0,0,3 = 8ζ(3) ln(2), (3.6)

c1,1,0 = 56ζ(3) ln(2) − 1/2, c1,0,2 =
1

36
(π4 − 48π2 ln(2)2), c0,1,1 = −1/2

Inserting the first term of (3.5) into (3.4), one finds a massless pole which must be repro-

duced by field theory couplings.

The couplings in (1.3) and (2.10), produces the following massless pole for p = n + 2:

A = Va(Cp−3, A
(1), A(1))Gab(A

(1))Vb(A
(1), T1, T2) (3.7)

where

Gab(A
(1)) =

iδab

(2πα′)2Tp (u)

Vb(A
(1), T1, T2) = Tp(2πα′)(k2 − k3)b (3.8)

Va(Cp−3, A
(1), A(1)) = µp(2πα′)2

1

(p − 2)!
ǫa0···ap−1aH

a0···ap−3k
ap−2

1 ξap−1

∞
∑

n=−1

bn(α′k1 · k)n+1

where k is the momentum of the off-shell gauge field. Note that the vertex Vb(A
(1), T1, T2)

has no higher derivative correction as it arises from the kinetic term of the tachyon. The

amplitude (3.7) becomes

A = µp(2πα′)
2i

(p − 2)!u
ǫa0···ap−1aH

a0···ap−3k
ap−2

2 k
ap−1

3 ξa
∞
∑

n=−1

bn

(

α′

2

)n+1

(s + t + 1/2)n+1

(3.9)
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this is exactly the massless pole of string theory amplitude.

The contact terms of string theory amplitude (3.5) on the other hand are reproduced

by the following couplings:

2iα′(πα′)µp

∞
∑

p,n,m=0

cp,n,m

(

α′

2

)p
(

α′
)2n+m

Cp−3 ∧ ∂a1 · · · ∂a2n∂b1 · · · ∂bm(F (1) + F (2))

∧(DaDa)
pDb1 · · ·Dbm

(Da1 · · ·Dan
DT ∧ Dan+1 · · ·Da2n

DT ∗) (3.10)

For n = m = 0 case, the above couplings are the natural extension of the couplings (2.5)

to Cp−3. Since there is no on-shell ambiguity for the couplings in (2.5), one expects there

should be no on-shell ambiguity for the above couplings either. The above couplings are

the higher derivative extension of the coupling in the fourth line of (1.8).

3.2 p = n case

Now we consider n = p case. The string theory amplitude in this case is symmetric under

interchanging 2 ↔ 3. On the other hand, there is no Feynman amplitude in field theory

corresponding to four-point function of one RR, one gauge field, one T1 and one T2. Hence,

for p = n the string theory amplitude (3.1) is the S-matrix element of one RR, one gauge

field and two T1 or two T2. Its electric part is,

AAT1T1C = ± 8iµp√
2πp!

[(

ǫa0···ap−1aHa0···ap−1

)

J (3.11)

×
{

k2a(t+1/4)(2ξ.k3)+k3a(s+1/4)(2ξ.k2)−ξa(s+1/4)(t+1/4)

}]

Note that the amplitude satisfies the Ward identity, i.e., the amplitude vanishes under

replacement ξa → ka
1 .

The expansion of (s + 1/4)(t + 1/4)J around (3.3) is

(s + 1/4)(t + 1/4)J =

√
2π

2

(

−1

(t + s + u + 1/2)
+

∞
∑

n=0

an(s + t + u + 1/2)n (3.12)

+

∑

∞

n,m=0 dn,m(s + t + 1/2)n((t + 1/4)(s + 1/4))m+1

(t + s + u + 1/2)

+
∞
∑

p,n,m=0

ep,n,m(s+t+u+1/2)p(s+t+1/2)n((t+1/4)(s+1/4))m+1





where the coefficients an in the first line are exactly those appear in (2.4). Some of the

coefficients dn,m and cp,n,m are

d0,0 = −π2/3, d1,0 = 8ζ(3) (3.13)

d2,0 = −7π4/45, d0,1 = +π4/45, d3,0 = 32ζ(5), d1,1 = −32ζ(5) + 8ζ(3)π2/3

e0,0,0 =
2

3

(

2π2 ln(2) − 21ζ(3)
)

, e1,0,0 =
1

9

(

4π4 − 504ζ(3) ln(2) + 24π2 ln(2)2
)
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The field theory, has the following massless poles for p = n:

A = Va(Cp−1, A)Gab(A)Vb(A,T1, T1, A
(1)) (3.14)

where A should be A(1) and A(2). The propagator and vertexes Va(Cp−1, A) are

Gab(A) =
iδab

(2πα′)2Tp (u + t + s + 1/2)

Va(Cp−1, A
(1)) = iµp(2πα′)

1

p!
ǫa0···ap−1aH

a0···ap−1 (3.15)

Va(Cp−1, A
(2)) = −iµp(2πα′)

1

p!
ǫa0···ap−1aH

a0···ap−1

If one uses the kinetic term of the tachyon to find the vertex Vb(A
(1), T1, T1, A

(1)) then the

amplitude (3.14) reproduces the massless pole in the first term of (3.12). To find the higher

derivative coupling corresponding to the second term in (3.12), we consider the following

higher derivative terms:

−2α′µp

∞
∑

n=0

an

(

α′

2

)n

Cp−1 ∧ (DaDa)
n[(F (1) − F (2))|T |2] (3.16)

Combining the above with the coupling of one RR, two tachyons and one gauge field of

(2.5), one finds the following coupling:

−2α′µp

∞
∑

n=0

an

(

α′

2

)n

Hp ∧ (∂a∂a)
n[(A(1) − A(2))TT ∗] (3.17)

This coupling reproduces exactly the second term in (3.12). The couplings in (3.16) are

the higher derivative extension of the coupling in the first term in the third line of (1.8).

To examine the other terms in the string theory amplitude (3.11), consider the expan-

sion of (t + 1/4)J around (3.3), i.e.,

(t + 1/4)J =
1

2

√
2π

( −1

(s + 1/4)(t + s + u + 1/2)
+

∑

∞

n=0 an(s + t + u + 1/2)n

(s + 1/4)
(3.18)

+

∑

∞

n,m=0 dn,m(s + t + 1/2)n(t + 1/4)m+1(s + 1/4)m

(t + s + u + 1/2)

+
∞
∑

p,n,m=0

ep,n,m(s + t + u + 1/2)p(s + t + 1/2)n(t + 1/4)m+1(s + 1/4)m





Replacing it in the amplitude (3.11), one finds that the first term of (3.18) is reproduced

by the effective actions (1.3) and (1.8). The second term of (3.18) on the other hand should

be reproduced by the following Feynman amplitude in field theory:

A = V (Cp−1, T1, T2)G(T2)V (T2, T1, A
(1)) (3.19)
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where the propagator and the vertex V (T2, T1, A
(1)) which have no higher derivative cor-

rections are given by

V (T2, T1, A
(1)) = Tp(2πα′)(k3 − k)·ξ

G(T2) =
i

(2πα′)Tp(s + 1/4)
(3.20)

and the vertex V (Cp−1, T1, T2) should be derived from the higher derivative term (2.5),

that is

V (Cp−1, T1, T2) = (α′)2µp

∞
∑

n=0

an

(

−α′

2
papa

)n 1

p!
ǫa0···ap−1aHa0···ap−1k2a

where pa is the momentum of the RR field. Replacing them in (3.19), one finds exact

agreement with the second term in (3.18). Note that the tachyon appears in (3.19) as

off-shell field, hence, this consistency indicates that the couplings in (2.5) have no on-shell

ambiguity.

The sum of massless poles in the second line of (3.18) and the corresponding term

when k2 ↔ k3, and the massless pole in the second line of (3.12) are

4iµp
ǫa0···ap−1aHa0···ap−1

p!(s + t + u + 1/2)

[

k2a(t + 1/4)(2ξ.k3) −
1

2
ξa(s + 1/4)(t + 1/4) + (1 ↔ 2)

]

×
∞
∑

n,m=0

dn,m(s + t + 1/2)n((t + 1/4)(s + 1/4))m (3.21)

This should be reproduced in field theory by the amplitude (3.14) in which the vertex

Va(Cp−1, A) and the propagator Gab(A) are given in (3.15) and the vertex Vb(A,A(1), T1, T1)

should be derived from the the tachyon DBI action and its higher derivative extension in

which we are not interested in this paper. In fact it has been checked in [22] that the d0,0

term is reproduced by the tachyon DBI action.

Finally, the sum of the contact terms in the last line of (3.18) and the corresponding

term when k2 ↔ k3, and the last term in (3.12) are

4iµp
ǫa0···ap−1aHa0···ap−1

p!

[

k2a(t + 1/4)(2ξ.k3) −
1

2
ξa(s + 1/4)(t + 1/4) + (1 ↔ 2)

]

×
∞
∑

p,n,m=0

ep,n,m(s + t + u + 1/2)p(s + t + 1/2)n((t + 1/4)(s + 1/4))m (3.22)

The field theory couplings corresponding to the above terms are

2(α′)2µp
ǫa0···ap−1aHa0···ap−1

p!

∞
∑

p,n,m=0

ep,n,m(s+t+u+1/2)p(s+t+1/2)n((t+1/4)(s+1/4))m

×
[

∂b∂c(A
(1)−A(2))aD

bT1D
cT1+2DaDbT1DcT1∂

b(A(1)−A(2))c+T1→T2

]
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where our notation is such that

((s + 1/4)(t + 1/4))mHATT →
(

α′
)2m

H∂a1 · · · ∂a2m
ADa1 · · ·DamTDam+1 · · ·Da2mT

(s + t + 1/2)nHATT →
(

α′
)n

H∂a1 · · · ∂anADa1 · · ·Dan
(TT )

(s + t + u + 1/2)pHATT →
(

α′

2

)p

H(DaD
a)p(ATT ) (3.23)

Note that the above Lagrangian is invariant under gauge transformation. In terms of field

strength, these higher derivative couplings are

2(α′)2µp

∞
∑

p,n,m=0

ep,n,m(s + t + u + 1/2)p(s + t + 1/2)n((t + 1/4)(s + 1/4))m

Cp−1 ∧
[

−∂b∂c(F
(1) − F (2))DbTDcT ∗ + 2DbDT ∧ DcDT ∗(F (1) − F (2))bc+

+∂b(F
(1) − F (2))c ∧ DbDTDcT ∗ + ∂b(F

(1) − F (2))c ∧ DbDT ∗DcT
]

(3.24)

Our notation is that the fields without indexes are forms, e.g., F
(1)
c is one form and F (1)

is two form. The above couplings have on-shell ambiguity which can be fixed by studying

the S-matrix element of one RR, two tachyons and two gauge fields in which the above

couplings appear in the tachyonic pole of the amplitude. The above higher derivative

couplings have at least four derivatives, so they are not extension of the couplings in (1.8).

This ends our illustration of consistency between the expansion of the S-matrix element of

one RR, two tachyons and one gauge field around (3.3) and the higher derivative couplings

of the field theory.

4. Discussion

In this paper, we have shown that the expansion of the S-matrix element of one RR, two

tachyons and one gauge field around (3.3) corresponds to higher derivative extension of the

Wess-Zumino terms, i.e., the couplings (3.10), (3.16) and (3.24). Hence, one expects that

the expansion (3.3) to be the low energy expansion. In fact, the expansion (3.3) in terms

of momenta of the open string fields is

α′k1 · k2 → 0, α′k1 · k3 → 0, α′(k2 + k3)
2 → 0 (4.1)

The low energy expansion of the amplitude (2.1) is also around

α′(k + k′)2 → 0 (4.2)

To find a general rule for the derivative expansion of any S-matrix element involving

tachyon, let us examine the expansion of some other S-matrix elements. The derivative

expansion of the S-matrix element of two gauge fields and two tachyons has been proposed

in [25] to be around

α′k1 · k2 → 0, α′k1 · k3 → 0, α′k2 · k3 → 0 (4.3)
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where k1 is momentum of tachyon and k2, k3 are the momenta of the gauge fields.

The derivative expansion of the S-matrix element of four tachyons has been proposed

in [25]. The amplitude has different Chan-Paton factors. The one which has the factor

Tr (λ1λ2λ3λ4) should be expanded around

(

α′(k1 + k2)
2, α′k2 · k3, α′k1 · k3

)

→ 0

−
(

α′(k1 + k3)
2, α′k2 · k3, α′k1 · k2

)

→ 0

+
(

α′(k2 + k3)
2, α′k1 · k2, α′k1 · k3

)

→ 0

The first line produce s-channel, the second line produce u-channel and the last one produce

the t-channel. The derivative expansion of the S-matrix element of four tachyons and one

gauge field has been proposed in [26]. The amplitude has different Chan-Paton factors and

different factors of k1 · ζ5, k2 · ζ5 and k3 · ζ5 where ζ5 is the polarization of the gauge field.

The one which has the factor Tr (λ1λ2λ3λ4λ5)k1 · ζ5 should be expanded around

(

α′(k1 + k2)
2, α′(k3 + k4)

2, α′k2 · k3, α′k1 · k5, α′k4 · k5

)

→ 0

−
(

α′k1 · k2, α′k3 · k4, α′k2 · k3, α′k1 · k5, α′k4 · k5

)

→ 0

+
(

α′(k2 + k3)
2, α′k3 · k4, α′k2 · k3, α′k1 · k5, α′k4 · k5

)

→ 0

Let us compare the above expansions with the derivative expansion of the S-matrix ele-

ments involving only massless fields. The low energy expansion in this case is trivial, i.e.,

expansion around α′ki ·kj → 0 which is equivalent to the expansion around α′(ki+kj)
2 → 0.

However, for tachyon the expansion around α′ki · kj → 0 is not equivalent to the expan-

sion around α′(ki + kj)
2 → 0. For example, the expansion of amplitude (2.1) around

α′k ·k′ → 0 does not produce the massless pole of field theory, hence, that expansion would

not be correspond to the effective field theory of brane-anti-brane system. In general, the

derivative expansion of a tachyon amplitude should be an expansion around α′ki · kj → 0

or α′(ki + kj)
2 → 0 or a combination of them for each i, j. The nontrivial question of

finding the derivative expansion of a tachyon amplitude in then correspond to fixing this

ambiguity.

The above expansions of the tachyon amplitudes are then the expansions in terms of

power of momenta of the external states, i.e., α′ expansions. Hence, one expects that

they should be correspond to the derivative expansions of the field theory. In particular,

expansion of the S-matrix element of two tachyons and two gauge fields around (4.3)

should be correspond to the higher derivative coupling of two tachyons and two gauge

fields. These higher derivative couplings on the other hand can be used to find the vertex

Vb(A,A(1), T1, T1) in the amplitude (3.14) to produce the massless pole in (3.21). We leave

the details of that calculation for the future works, we note here however that the constants

dn,m that appear in the amplitude (3.21) have the same structure as the coefficients of

expansion of the S-matrix element of two gauge fields and two tachyons [25] expanded

around (4.3), in particular they do not have ln(2)′s.

The above rule for expanding the open string tachyon amplitude should be hold even

for closed string tachyon amplitude. The expansion of the sphere level S-matrix element

– 12 –
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of two gravitons and two closed string tachyons in type 0 theory has been proposed in [27]

to be around

α′(p3 + p4) → 0, α′p1 · p4 → 0, α′p2 · p4 → 0

where p1, p2 are the graviton momenta and p3, p4 are the tachyon momenta. The expansion

of the S-matrix element of four closed string tachyons in type 0 theory has been proposed

in [27] to be around

1

3

(

[α′(p3 + p4), α′p1 · p4, α′p2 · p4] → 0

+[α′(p1 + p4), α′p3 · p4, α′p2 · p4] → 0

+[α′(p2 + p4), α′p3 · p4, α′p1 · p4] → 0
)

(4.4)

which correspond to s-, t- and u-channels.

The strategy for finding the above expansions in [27] was to find an expansion whose

leading order terms are reproduced exactly by the effective action of type 0 theory which

includes a covariant tachyon kinetic term. The above expansions are unique which are

expected to be the derivative expansion of their corresponding amplitudes. Using the

strategy in [27] for finding the expansion of the S-matrix element of two RR and two

tachyons, one finds various expansions which are consistent with the effective field theory.

Three expansions has been examined in [27]. However, neither of them is consistent with

the above rule for the derivative expansion. A derivative expansion which is consistent also

with the effective action of type 0 is (s → 0, t, u → −1)/2 + (s → −2, t, u → 0)/2 which in

terms of momentum is

1

2

(

[α′(p3 + p4), α′p1 · p4, α′p2 · p4] → 0

+[α′(p1 + p4), α′(p2 + p4), α′p3 · p4, ] → 0
)

(4.5)

The expansion of the amplitude around this point is

A(C,C, T, T ) ∼ πα

(

−2

s
− 2

t
− 2

u
+ 4 ln(2) + · · ·

)

(4.6)

where α is a factor which has four momenta. The above expansion is consistent with the

effective action of type 0 theory and fixes the function f(T ) that multiply the kinetic term

of the RR fields to be

f(T ) = 1 + T +
1

2
T 2

which is the one that has been found in [28].

The tachyon couplings (2.5) appear as tachyonic pole and the contact terms of string

theory S-matrix element (3.1) with exactly correct coefficients. The sum of these two terms

is gauge invariant. We have interpreted this as an indication that the couplings in (2.5)

– 13 –
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have no on-shell ambiguity. To elaborate this point, consider, as an example, the following

couplings:

2iα′µp

∞
∑

n=0

an

(

α′

2

)n

(−2α′)2Cp−1 ∧ (DaDa)
n(DDαDαT ∧ DDβDβT ∗) (4.7)

which is equivalent to (2.5) for on-shell tachyon. If one considers the above couplings

instead of the couplings (2.5), one would find the contact terms in the second term in

(3.12) after combining them with the couplings in (3.16). The above couplings produce

also the tachyonic pole (3.19) in which the vertex V (Cp−1, T1, T2) is

V (Cp−1, T1, T2) = (α′)2µp

∞
∑

n=0

an

(

−α′

2
papa

)n 1

p!
ǫa0···ap−1aHa0···ap−1k2a(2α

′k2)

where k = k1 + k3 is the momentum of the off-shell tachyon. If one replaces it into (3.19),

one finds an extra factor of (2α′k2) in the tachyonic pole. However, one can write it as

2α′k2 = −4s = 1 − 4

(

s +
1

4

)

the first term gives exactly the tachyonic pole which is also produced by (2.5). When

combining it with the above contact terms one finds a combination which is gauge invariant.

The second term on the other hand gives an extra contact term. The resulting contact

terms are

ǫa0···ap−1aHa0···ap−1

∞
∑

n=0

an(s + t + u + 1/2)n(ξ ·k3 k2a + ξ ·k2 k3a) (4.8)

Obviously it does not satisfy the Ward identity, so it can not be reproduced by a gauge

invariant coupling in field theory. Therefore, one would find inconsistency between field

theory and string theory S-matrix element if one considers the couplings (4.7) instead of

the couplings (2.5). We expect a similar idea should hold for all other tachyon couplings.

In other words, the S-matrix method in principle may have the potential to produce all

tachyon couplings without on-shell ambiguity.
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