Higher derivative corrections to Wess-Zumino action of Brane-Antibrane systems

Mohammad R. Garousi
Department of Physics, Ferdowsi University,
P.O. Box 1436, Mashhad, Iran, and
Institute for Studies in Theoretical Physics and Mathematics (IPM),
P.O.Box 19395-5531, Tehran, Iran
E-mail: garousi@ipm.ir

Abstract: By explicit calculation, we show that the expansion of the disk level S-matrix element of one RR field, two open string tachyons and one gauge field that has been recently found corresponds to the derivative expansion of the Wess-Zumino action of D-brane-anti-D-brane systems.

Keywords: D-branes, Tachyon Condensation, Conformal Field Models in String Theory, Brane Dynamics in Gauge Theories.

Contents

1. Introduction 1
2. Three-point function 3
3. Four-point function 6
$3.1 \quad p=n+2$ case
$3.2 \quad p=n$ case $\quad 8$
4. Discussion 11

1. Introduction

Study of unstable objects in string theory might shed new light in understanding properties of string theory in time-dependent backgrounds [1-6]. Generally speaking, source of instability in these processes is appearance of some tachyonic modes in the spectrum of these objects. It then makes sense to study them in a field theory which includes those modes. In this regard, it has been shown by A. Sen that an effective action of the Dirac- Born-Infeld type proposed in [7-10] can capture many properties of the decay of non-BPS D_{p}-branes in string theory [2, [3] . This action has been found in [8] by studying the S-matrix element of one graviton and two tachyons.

Recently, unstable objects have been used to study spontaneous chiral symmetry breaking in holographic model of QCD [11-13]. In these studies, flavor branes introduced by placing a set of parallel branes and antibranes on a background dual to a confining color theory [14]. Detailed study of brane-antibrane system reveals when branes separation is smaller than the string length scale, the spectrum has two tachyonic modes [5]. The effective action should then include these modes as they are the most important ones which rule the dynamics of the system.

The effective action of a $D_{p} \bar{D}_{p}$-brane in Type IIA(B) theory should be given by some extension of the DBI action and the WZ terms which include the tachyon fields. The DBI part may be given by the projection of the effective action of two non-BPS D_{p}-branes in Type $\operatorname{IIB}(\mathrm{A})$ theory with $(-1)^{F_{L}}$ projection [16]. We are interested in this paper in the appearance of tachyon, gauge field and the RR field in these actions. These fields appear in the DBI part as the following [17]:

$$
\begin{equation*}
S_{\mathrm{DBI}}=-T_{p} \int d^{p+1} \sigma \operatorname{Tr}\left(V(\mathcal{T}) \sqrt{-\operatorname{det}\left(\eta_{a b}+2 \pi \alpha^{\prime} F_{a b}+2 \pi \alpha^{\prime} D_{a} \mathcal{T} D_{b} \mathcal{T}\right)}\right) \tag{1.1}
\end{equation*}
$$

where T_{p} is the p-brane tension. The trace in the above action should be completely symmetric between all matrices of the form $F_{a b}, D_{a} \mathcal{T}$, and individual \mathcal{T} of the tachyon potential. These matrices are

$$
F_{a b}=\left(\begin{array}{cc}
F_{a b}^{(1)} & 0 \tag{1.2}\\
0 & F_{a b}^{(2)}
\end{array}\right), D_{a} \mathcal{T}=\left(\begin{array}{cc}
0 & D_{a} T \\
\left(D_{a} T\right)^{*} & 0
\end{array}\right), \mathcal{T}=\left(\begin{array}{cc}
0 & T \\
T^{*} & 0
\end{array}\right)
$$

where $F_{a b}^{(i)}=\partial_{a} A_{b}^{(i)}-\partial_{b} A_{a}^{(i)}$ and $D_{a} T=\partial_{a} T-i\left(A_{a}^{(1)}-A_{a}^{(2)}\right) T$. The tachyon potential which is consistent with S-matrix element calculations has the following expansion:

$$
V(\mathcal{T})=1+\pi \alpha^{\prime} m^{2} \mathcal{T}^{2}+\frac{1}{2}\left(\pi \alpha^{\prime} m^{2} \mathcal{T}^{2}\right)^{2}+\cdots
$$

where m^{2} is the mass squared of tachyon, i.e., $m^{2}=-1 /\left(2 \alpha^{\prime}\right)$. The above expansion is consistent with the potential $V(\mathcal{T})=e^{\pi \alpha^{\prime} m^{2} \mathcal{T}^{2}}$ which is the tachyon potential of BSFT [18]. This action has the following expansion:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{DBI}}=-2 T_{p}-T_{p}\left(2 \pi \alpha^{\prime}\right)\left(m^{2}|T|^{2}+D T \cdot(D T)^{*}-\frac{\pi \alpha^{\prime}}{2}\left(F^{(1)} \cdot F^{(1)}+F^{(2)} \cdot F^{(2)}\right)\right)+(1 \tag{1:3}
\end{equation*}
$$

where dots refers to the terms which have more than two fields.
The WZ term describing the coupling of RR field to tachyon and gauge field of brane-anti-brane is given by $19-21$

$$
\begin{equation*}
S_{\mathrm{WZ}}=\mu_{p} \int_{\Sigma_{(p+1)}} C \wedge \mathrm{STr} e^{i 2 \pi \alpha^{\prime} \mathcal{F}} \tag{1.4}
\end{equation*}
$$

where the curvature of the superconnection is defined as:

$$
\begin{equation*}
\mathcal{F}=d \mathcal{A}-i \mathcal{A} \wedge \mathcal{A} \tag{1.5}
\end{equation*}
$$

the superconnection is

$$
i \mathcal{A}=\left(\begin{array}{cc}
i A^{(1)} & \beta T^{*} \\
\beta T & i A^{(2)}
\end{array}\right)
$$

where β is a normalization constant. If one uses the tachyon DBI action (1.1) for describing the dynamics of the tachyon field then the normalization of tachyon in the WZ action (1.4) has to be 22

$$
\begin{equation*}
\beta=\frac{1}{\pi} \sqrt{\frac{2 \ln (2)}{\alpha^{\prime}}} \tag{1.6}
\end{equation*}
$$

The "supertrace" in (1.4) is defined by

$$
\operatorname{STr}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{Tr} A-\operatorname{Tr} D
$$

Using the multiplication rule of the supermatrices 20]

$$
\left(\begin{array}{ll}
A & B \tag{1.7}\\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)=\binom{A A^{\prime}+(-)^{c^{\prime}} B C^{\prime} A B^{\prime}+(-)^{d^{\prime}} B D^{\prime}}{D C^{\prime}+(-)^{a^{\prime}} C A^{\prime} D D^{\prime}+(-)^{b^{\prime}} C B^{\prime}}
$$

where x^{\prime} is 0 if X is an even form or 1 if X is an odd form, one finds that the curvature is

$$
i \mathcal{F}=\left(\begin{array}{cc}
i F^{(1)}-\beta^{2}|T|^{2} & \beta(D T)^{*} \\
\beta D T & i F^{(2)}-\beta^{2}|T|^{2}
\end{array}\right),
$$

where $F^{(i)}=\frac{1}{2} F_{a b}^{(i)} d x^{a} \wedge d x^{b}$ and $D T=\left[\partial_{a} T-i\left(A_{a}^{(1)}-A_{a}^{(2)}\right) T\right] d x^{a}$. Using the expansion for the exponential term in the WZ action (1.4), one finds many different terms. The terms which involve at most three open string fields are the following:

$$
\begin{align*}
\mu_{p}\left(2 \pi \alpha^{\prime}\right) C \wedge \operatorname{STr} i \mathcal{F}= & \mu_{p}\left(2 \pi \alpha^{\prime}\right) C_{p-1} \wedge\left(F^{(1)}-F^{(2)}\right) \tag{1.8}\\
\frac{\mu_{p}}{2!}\left(2 \pi \alpha^{\prime}\right)^{2} C \wedge \mathrm{STr} i \mathcal{F} \wedge i \mathcal{F}= & \frac{\mu_{p}}{2!}\left(2 \pi \alpha^{\prime}\right)^{2} C_{p-3} \wedge\left\{F^{(1)} \wedge F^{(1)}-F^{(2)} \wedge F^{(2)}\right\} \\
& +C_{p-1} \wedge\left\{-2 \beta^{2}|T|^{2}\left(F^{(1)}-F^{(2)}\right)+2 i \beta^{2} D T \wedge(D T)^{*}\right\} \\
\frac{\mu_{p}}{3!}\left(2 \pi \alpha^{\prime}\right)^{3} C \wedge \mathrm{STr} i \mathcal{F} \wedge i \mathcal{F} \wedge i \mathcal{F}= & \frac{\mu_{p}}{3!}\left(2 \pi \alpha^{\prime}\right)^{3} C_{p-3}\left\{3 i \beta^{2}\left(F^{(1)}+F^{(2)}\right) \wedge D T \wedge(D T)^{*}\right\}
\end{align*}
$$

The coupling of one RR field C_{p-1}, two tachyons and one gauge field in the above terms can be combined into the following form:

$$
\begin{gather*}
-\beta^{2} \mu_{p}\left(2 \pi \alpha^{\prime}\right)^{2} \int_{\Sigma_{(p+1)}} C_{(p-1)} \wedge\left\{d\left(A^{(1)}-A^{(2)}\right) T T^{*}-\left(A^{(1)}-A^{(2)}\right) d\left(T T^{*}\right)\right\} \\
=-\beta^{2} \mu_{p}\left(2 \pi \alpha^{\prime}\right)^{2} \int_{\Sigma_{p+1}} H_{(p)} \wedge\left(A^{(1)}-A^{(2)}\right) T T^{*} \tag{1.9}
\end{gather*}
$$

This combination actually appears naturally in the S-matrix element in the string theory side [22]. It has been shown in [22] that the effective actions (1.1) and (1.4) are consistent with an expansion of the S-matrix element of one RR, two tachyons and one gauge field. In the present paper, we would like to show that the expansion found in [22] is in fact a derivative expansion, i.e., an expansion which is consistent with the derivative expansion of the field theory of brane-anti-brane sysytem. We will show this by explicitly calculating the higher derivative terms of the WZ field theory, i.e., (3.10), (3.16), and (3.24).

An outline of the rest of paper is as follows. In the next section, we study the derivative expansion of the S-matrix element of one RR and two tachyons, and the S-matrix element of one $R R$ and two gauge fields. We shall find in this section the higher derivative extension of the coupling in the second line of (1.8) and the coupling in the last term in the third line of (1.8). In section 3, we study the derivative expansion of the S-matrix element of one RR, two tachyons and one gauge field. We shall find the higher derivative extension of the coupling in the last line of (1.8) and the coupling in the first term in the third line of (1.8). In this section we will also find a class of higher derivative terms, i.e., (3.24) which has at least four derivatives, hence, they are not higher derivative extension of the two derivative couplings of the WZ terms. We discuss briefly our results in section 4, and give a general rule for finding the derivative expansion of any S-matrix element involving the tachyon fields.

2. Three-point function

The three-point amplitude between one RR field and two tachyons in string theory side is
given as 19, 22

$$
\begin{equation*}
\mathcal{A}^{T, T, R R}=\left(\frac{i \mu_{p}}{4}\right) 2 \pi \frac{\Gamma[-2 u]}{\Gamma\left[\frac{1}{2}-u\right]^{2}} \operatorname{Tr}\left(P_{-} \not H_{(n)} M_{p} \gamma^{a}\right) k_{a} . \tag{2.1}
\end{equation*}
$$

where $u=-\left(k+k^{\prime}\right)^{2}$ and k, k^{\prime} are the momenta of the tachyons. In the string theory side we have set $\alpha^{\prime}=2$. The trace is zero for $p \neq n$, and for $n=p$ it is

$$
\operatorname{Tr}\left(H_{(n)} M_{p} \gamma^{a}\right)= \pm \frac{32}{p!} H_{a_{0} \ldots a_{p-1}} \epsilon^{a_{0} \ldots a_{p-1} a} .
$$

We are going to compare string theory S-matrix elements with field theory S-matrix element including their coefficients, however, we are not interested in fixing the overall sign of the amplitudes. Hence, in above and in the rest of equations in this paper, we have payed no attention to the sign of equations. The trace in (2.1) containing the factor of γ^{11} ensures the following results also hold for $p>3$ with $H_{(n)} \equiv * H_{(10-n)}$ for $n \geq 5$. The tachyon vertex operator in string theory corresponds to the real components of the complex tachyon of field theory, i.e.,

$$
\begin{equation*}
T=\frac{1}{\sqrt{2}}\left(T_{1}+i T_{2}\right) \tag{2.2}
\end{equation*}
$$

Now if one replaces k_{a} in (2.1) with $-k_{a}^{\prime}-p_{a}$ using the conservation of momentum, one will find that the p_{a} term vanishes using the totally antisymmetric property of $\epsilon^{a_{0} \ldots a_{p-1} a}$. Hence the amplitude (2.1) is antisymmetric under interchanging $1 \leftrightarrow 2$. This indicates that only the three-point amplitude between one RR , one T_{1} and one T_{2} is non-zero.

The derivative expansion of (2.1) is at $u \rightarrow 0$. Using the Maple, one can expand the prefactor of (2.1) around this point, i.e.,

$$
\begin{equation*}
2 \pi \frac{\Gamma[-2 u]}{\Gamma\left[\frac{1}{2}-u\right]^{2}}=\frac{-1}{u}+\sum_{n=0}^{\infty} a_{n} u^{u} . \tag{2.3}
\end{equation*}
$$

where some of the coefficients a_{n} are

$$
\begin{align*}
& a_{0}=4 \ln (2) \\
& a_{1}=\frac{\pi^{2}}{6}-8 \ln (2)^{2} \\
& a_{2}=-\frac{2}{3}\left(\pi^{2} \ln (2)-3 \zeta(3)-16 \ln (2)^{3}\right) \tag{2.4}\\
& a_{3}=\frac{1}{120}\left(160 \pi^{2} \ln (2)^{2}+3 \pi^{4}-960 \zeta(3) \ln (2)-1280 \ln (2)^{4}\right) \\
& a_{5}=-\frac{1}{90}\left(160 \pi^{2} \ln (2)^{3}+9 \pi^{4} \ln (2)-1440 \zeta(3) \ln (2)^{2}+30 \zeta(3) \pi^{2}-768 \ln (2)^{5}-540 \zeta(5)\right)
\end{align*}
$$

It is shown in [19] that the massless pole reproduced by the kinetic term of tachyon and the WZ coupling in the first line of (1.8). There is no higher power of momenta in the massless pole, hence, the kinetic term of tachyon and the WZ coupling have no higher derivative extension. Since the expansion (2.3) is in terms of the powers of p_{a}^{2}, the other terms in
(2.3) correspond to the higher derivative corrections of the WZ action. It is easy to check that the following higher derivative terms reproduce the other terms in (2.3):

$$
\begin{equation*}
2 i \alpha^{\prime} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{2}\right)^{n} C_{p-1} \wedge\left(D^{a} D_{a}\right)^{n}\left(D T \wedge D T^{*}\right) \tag{2.5}
\end{equation*}
$$

The above couplings have on-shell ambiguity, since one can replace T with $\partial^{a} \partial_{a} T$ for the on-shell external tachyon. However, we will show in the next section that the above couplings, with exactly the same coefficients a_{n}, appear in the tachyonic pole of the scattering amplitude of one RR, two tachyons and one gauge field. So there is no on-shell ambiguity in the above couplings. The above couplings are the higher derivative extension of the coupling in the second term in the third line of (1.8).

The string theory S-matrix element of one RR and two gauge fields is given by [23, 24]

$$
\begin{equation*}
\mathcal{A} \sim 2 \frac{\Gamma[-2 u]}{\Gamma[1-u]^{2}} K \tag{2.6}
\end{equation*}
$$

where K is the kinematic factor. Obviously the derivative expansion of this amplitude is around $u \rightarrow 0$. Expansion of the prefactor at this point is

$$
\begin{equation*}
2 \frac{\Gamma[-2 u]}{\Gamma[1-u]^{2}}=-\sum_{n=-1}^{\infty} b_{n} u^{n} . \tag{2.7}
\end{equation*}
$$

where some of the coefficients b_{n} are

$$
\begin{align*}
b_{-1} & =1 \\
b_{0} & =0 \\
b_{1} & =\frac{\pi^{2}}{6} \\
b_{2} & =2 \zeta(3) \\
b_{3} & =\frac{19}{360} \pi^{4} \tag{2.8}\\
b_{4} & =\frac{1}{3}\left(\zeta(3) \pi^{2}+18 \zeta(5)\right) \\
b_{5} & =\frac{1}{3024}\left(55 \pi^{6}+6048 \zeta(3)^{2}\right)
\end{align*}
$$

In this case actually there is no massless pole at $u=0$ as the kinematic factor provides a compensating factor of u. The amplitude has the following expansion:

$$
\begin{equation*}
\mathcal{A}=i \frac{(4 \pi)^{2} \mu_{p}}{4(p-3)!} f^{a_{0} a_{1}} f^{\prime a_{2} a_{3}} \varepsilon^{a_{4} \cdots a_{p}} \epsilon_{a_{0} \cdots a_{p}}\left(\sum_{n=-1}^{\infty} b_{n} u^{n+1}\right) \delta_{p, n+2} \tag{2.9}
\end{equation*}
$$

where $f_{a b}=i\left(k_{a} \xi_{b}-k_{b} \xi_{a}\right), f^{\prime}{ }_{a b}=i\left(k_{a}^{\prime} \xi_{b}^{\prime}-k_{b}^{\prime} \xi_{a}^{\prime}\right)$ and ε is the polarization of the RR potential. The above terms are reproduced by the following higher derivative terms
$\frac{\mu_{p}}{2!}\left(2 \pi \alpha^{\prime}\right)^{2} C_{p-3} \wedge\left(\sum_{n=-1}^{\infty} b_{n}\left(\alpha^{\prime}\right)^{n+1} \partial^{a_{1}} \cdots \partial^{a_{n+1}} F^{(1)} \wedge \partial_{a_{1}} \cdots \partial_{a_{n+1}} F^{(1)}-\left(F^{(1)} \rightarrow F^{(2)}\right)\right)(2$

We will see in the next section that these couplings, with exactly the same coefficients b_{n}, appear in the massless pole of the scattering amplitude of one RR, two tachyons and one gauge field. The above couplings are the higher derivative extension of the coupling in the second line of (1.8).

3. Four-point function

The S-matrix element of one RR field, two tachyons and one gauge field is given as 22

$$
\begin{align*}
\mathcal{A}^{A T T C}= & \frac{i \mu_{p}}{2 \sqrt{2 \pi}}\left[\operatorname{Tr}\left(\left(P_{-} \not H_{(n)} M_{p}\right)\left(k_{3} \cdot \gamma\right)\left(k_{2} \cdot \gamma\right)(\xi \cdot \gamma)\right) I \delta_{p, n+2}+\operatorname{Tr}\left(\left(P_{-} \not H_{(n)} M_{p}\right) \gamma^{a}\right) J \delta_{p, n}\right. \\
& \left.\times\left\{k_{2 a}(t+1 / 4)\left(2 \xi . k_{3}\right)+k_{3 a}(s+1 / 4)\left(2 \xi \cdot k_{2}\right)-\xi_{a}(s+1 / 4)(t+1 / 4)\right\}\right] \tag{3.1}
\end{align*}
$$

where I, J are:

$$
\begin{aligned}
& I=2^{1 / 2}(2)^{-2(t+s+u)-1} \pi \frac{\Gamma(-u) \Gamma(-s+1 / 4) \Gamma(-t+1 / 4) \Gamma(-t-s-u)}{\Gamma(-u-t+1 / 4) \Gamma(-t-s+1 / 2) \Gamma(-s-u+1 / 4)} \\
& J=2^{1 / 2}(2)^{-2(t+s+u+1)} \pi \frac{\Gamma(-u+1 / 2) \Gamma(-s-1 / 4) \Gamma(-t-1 / 4) \Gamma(-t-s-u-1 / 2)}{\Gamma(-u-t+1 / 4) \Gamma(-t-s+1 / 2) \Gamma(-s-u+1 / 4)}
\end{aligned}
$$

where the Mandelstam variables are

$$
s=-\left(k_{1}+k_{3}\right)^{2}, \quad t=-\left(k_{1}+k_{2}\right)^{2}, \quad u=-\left(k_{2}+k_{3}\right)^{2}
$$

k_{1} is momentum of the gauge field and k_{2}, k_{3} are the momenta of the tachyons. Note that I, J are symmetric under $s \leftrightarrow t$. The traces in (3.1) are:

$$
\begin{gather*}
\operatorname{Tr}\left(H_{(n)} M_{p}\left(k_{3} \cdot \gamma\right)\left(k_{2} \cdot \gamma\right)(\xi \cdot \gamma)\right) \delta_{p, n+2}= \pm \frac{32}{n!} \epsilon^{a_{0} \cdots a_{p}} H_{a_{0} \cdots a_{p-3}} k_{3 a_{p-2}} k_{2 a_{p-1}} \xi_{a_{p}} \delta_{p, n+2} \\
\operatorname{Tr}\left(H_{(n)} M_{p} \gamma^{a}\right) \delta_{p, n}= \pm \frac{32}{n!} \epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}} \delta_{p, n} \tag{3.2}
\end{gather*}
$$

Examining the poles of the Gamma functions, one realizes that for the case that $p=n+2$, the amplitude has massless pole and infinite tower of massive poles. Whereas for $p=n$ case, there are tachyon, massless, and infinite tower of massive poles. The tachyon pole in particular indicates that the kinetic term of the tachyon has no higher derivative extension. It has been shown in [22] that the leading order term of the amplitude (3.1) expanded around the following point:

$$
\begin{equation*}
t \rightarrow-1 / 4, \quad s \rightarrow-1 / 4, \quad u \rightarrow 0 \tag{3.3}
\end{equation*}
$$

is consistent with the effective actions (1.1) and (1.4). We would like to find the field theory couplings which reproduce all terms of the expansion. Let us study each case separately.

$3.1 p=n+2$ case

For $p=n+2$, the amplitude is antisymmetric under interchanging $2 \leftrightarrow 3$, hence the fourpoint function between one RR , one gauge field and two T_{1} or two T_{2} is zero. The electric part of the amplitude for one RR , one gauge field, one T_{1} and one T_{2} is given by

$$
\begin{equation*}
\mathcal{A}^{A T_{1} T_{2} C}= \pm \frac{8 i \mu_{p}}{\sqrt{2 \pi}(p-2)!}\left[\epsilon^{a_{0} \cdots a_{p}} H_{a_{0} \cdots a_{p-3}} k_{3 a_{p-2}} k_{2 a_{p-1}} \xi_{a_{p}}\right] I \tag{3.4}
\end{equation*}
$$

Note that the amplitude satisfies the Ward identity, i.e., the amplitude vanishes under replacement $\xi^{a} \rightarrow k_{1}^{a}$.

Expansion of I around (3.3) is

$$
\begin{align*}
I=\pi \sqrt{2 \pi}(& -\frac{1}{u} \sum_{n=-1}^{\infty} b_{n}(s+t+1 / 2)^{n+1}+ \tag{3.5}\\
& \left.+\sum_{p, n, m=0}^{\infty} c_{p, n, m} u^{p}((s+1 / 4)(t+1 / 4))^{n}(s+t+1 / 2)^{m}\right)
\end{align*}
$$

where the coefficients b_{n} are exactly those that appear in (2.8) and $c_{p, 0,0}=a_{p}$ are those that appear in (2.4). The constants $c_{p, n, m}$ for some other cases are the following:

$$
\begin{align*}
& c_{0,0,2}=\frac{2}{3} \pi^{2} \ln (2), c_{0,1,0}=-14 \zeta(3), c_{0,0,3}=8 \zeta(3) \ln (2) \tag{3.6}\\
& c_{1,1,0}=56 \zeta(3) \ln (2)-1 / 2, c_{1,0,2}=\frac{1}{36}\left(\pi^{4}-48 \pi^{2} \ln (2)^{2}\right), c_{0,1,1}=-1 / 2
\end{align*}
$$

Inserting the first term of (3.5) into (3.4), one finds a massless pole which must be reproduced by field theory couplings.

The couplings in (1.3) and (2.10), produces the following massless pole for $p=n+2$:

$$
\begin{equation*}
\mathcal{A}=V_{a}\left(C_{p-3}, A^{(1)}, A^{(1)}\right) G_{a b}\left(A^{(1)}\right) V_{b}\left(A^{(1)}, T_{1}, T_{2}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
G_{a b}\left(A^{(1)}\right) & =\frac{i \delta_{a b}}{\left(2 \pi \alpha^{\prime}\right)^{2} T_{p}(u)} \\
V_{b}\left(A^{(1)}, T_{1}, T_{2}\right) & =T_{p}\left(2 \pi \alpha^{\prime}\right)\left(k_{2}-k_{3}\right)_{b} \tag{3.8}\\
V_{a}\left(C_{p-3}, A^{(1)}, A^{(1)}\right) & =\mu_{p}\left(2 \pi \alpha^{\prime}\right)^{2} \frac{1}{(p-2)!} \epsilon_{a_{0} \cdots a_{p-1} a} H^{a_{0} \cdots a_{p-3}} k_{1}^{a_{p-2}} \xi^{a_{p-1}} \sum_{n=-1}^{\infty} b_{n}\left(\alpha^{\prime} k_{1} \cdot k\right)^{n+1}
\end{align*}
$$

where k is the momentum of the off-shell gauge field. Note that the vertex $V_{b}\left(A^{(1)}, T_{1}, T_{2}\right)$ has no higher derivative correction as it arises from the kinetic term of the tachyon. The amplitude (3.7) becomes
$\mathcal{A}=\mu_{p}\left(2 \pi \alpha^{\prime}\right) \frac{2 i}{(p-2)!u} \epsilon_{a_{0} \cdots a_{p-1} a} H^{a a_{0} \cdots a_{p-3}} k_{2}^{a_{p-2}} k_{3}^{a_{p-1}} \xi^{a} \sum_{n=-1}^{\infty} b_{n}\left(\frac{\alpha^{\prime}}{2}\right)^{n+1}(s+t+1 / 2)^{n+1}$
this is exactly the massless pole of string theory amplitude.
The contact terms of string theory amplitude (3.5) on the other hand are reproduced by the following couplings:

$$
\begin{align*}
& 2 i \alpha^{\prime}\left(\pi \alpha^{\prime}\right) \mu_{p} \sum_{p, n, m=0}^{\infty} c_{p, n, m}\left(\frac{\alpha^{\prime}}{2}\right)^{p}\left(\alpha^{\prime}\right)^{2 n+m} C_{p-3} \\
& \wedge \partial^{a_{1}} \cdots \partial^{a_{2 n}} \partial^{b_{1}} \cdots \partial^{b_{m}}\left(F^{(1)}+F^{(2)}\right) \tag{3.10}\\
& \wedge\left(D^{a} D_{a}\right)^{p} D_{b_{1}} \cdots D_{b_{m}}\left(D_{a_{1}} \cdots D_{a_{n}} D T \wedge D_{a_{n+1}} \cdots D_{a_{2 n}} D T^{*}\right)
\end{align*}
$$

For $n=m=0$ case, the above couplings are the natural extension of the couplings (2.5) to C_{p-3}. Since there is no on-shell ambiguity for the couplings in (2.5), one expects there should be no on-shell ambiguity for the above couplings either. The above couplings are the higher derivative extension of the coupling in the fourth line of (1.8).

$3.2 p=n$ case

Now we consider $n=p$ case. The string theory amplitude in this case is symmetric under interchanging $2 \leftrightarrow 3$. On the other hand, there is no Feynman amplitude in field theory corresponding to four-point function of one RR , one gauge field, one T_{1} and one T_{2}. Hence, for $p=n$ the string theory amplitude (3.1) is the S-matrix element of one RR , one gauge field and two T_{1} or two T_{2}. Its electric part is,

$$
\begin{align*}
\mathcal{A}^{A T_{1} T_{1} C}= \pm \frac{8 i \mu_{p}}{\sqrt{2 \pi} p!}[& \left(\epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}}\right) J \tag{3.11}\\
& \left.\times\left\{k_{2 a}(t+1 / 4)\left(2 \xi \cdot k_{3}\right)+k_{3 a}(s+1 / 4)\left(2 \xi \cdot k_{2}\right)-\xi_{a}(s+1 / 4)(t+1 / 4)\right\}\right]
\end{align*}
$$

Note that the amplitude satisfies the Ward identity, i.e., the amplitude vanishes under replacement $\xi^{a} \rightarrow k_{1}^{a}$.

The expansion of $(s+1 / 4)(t+1 / 4) J$ around (3.3) is

$$
\begin{align*}
(s+1 / 4)(t+1 / 4) J= & \frac{\sqrt{2 \pi}}{2}\left(\frac{-1}{(t+s+u+1 / 2)}+\sum_{n=0}^{\infty} a_{n}(s+t+u+1 / 2)^{n}\right. \tag{3.12}\\
& +\frac{\sum_{n, m=0}^{\infty} d_{n, m}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m+1}}{(t+s+u+1 / 2)} \\
& \left.+\sum_{p, n, m=0}^{\infty} e_{p, n, m}(s+t+u+1 / 2)^{p}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m+1}\right)
\end{align*}
$$

where the coefficients a_{n} in the first line are exactly those appear in (2.4). Some of the coefficients $d_{n, m}$ and $c_{p, n, m}$ are

$$
\left.\begin{array}{rlrl}
d_{0,0} & =-\pi^{2} / 3, & d_{1,0} & =8 \zeta(3) \tag{3.13}\\
d_{2,0} & =-7 \pi^{4} / 45, & d_{0,1}=+\pi^{4} / 45, & d_{3,0}
\end{array}=32 \zeta(5), \quad d_{1,1}=-32 \zeta(5)+8 \zeta(3) \pi^{2} / 3\right)
$$

The field theory, has the following massless poles for $p=n$:

$$
\begin{equation*}
\mathcal{A}=V_{a}\left(C_{p-1}, A\right) G_{a b}(A) V_{b}\left(A, T_{1}, T_{1}, A^{(1)}\right) \tag{3.14}
\end{equation*}
$$

where A should be $A^{(1)}$ and $A^{(2)}$. The propagator and vertexes $V_{a}\left(C_{p-1}, A\right)$ are

$$
\begin{align*}
G_{a b}(A) & =\frac{i \delta_{a b}}{\left(2 \pi \alpha^{\prime}\right)^{2} T_{p}(u+t+s+1 / 2)} \\
V_{a}\left(C_{p-1}, A^{(1)}\right) & =i \mu_{p}\left(2 \pi \alpha^{\prime}\right) \frac{1}{p!} \epsilon_{a 0} \cdots a_{p-1} a H^{a_{0} \cdots a_{p-1}} \tag{3.1}\\
V_{a}\left(C_{p-1}, A^{(2)}\right) & =-i \mu_{p}\left(2 \pi \alpha^{\prime}\right) \frac{1}{p!} \epsilon_{a_{0} \cdots a_{p-1} a} H^{a_{0} \cdots a_{p-1}}
\end{align*}
$$

If one uses the kinetic term of the tachyon to find the vertex $V_{b}\left(A^{(1)}, T_{1}, T_{1}, A^{(1)}\right)$ then the amplitude (3.14) reproduces the massless pole in the first term of (3.12). To find the higher derivative coupling corresponding to the second term in (3.12), we consider the following higher derivative terms:

$$
\begin{equation*}
-2 \alpha^{\prime} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{2}\right)^{n} C_{p-1} \wedge\left(D^{a} D_{a}\right)^{n}\left[\left(F^{(1)}-F^{(2)}\right)|T|^{2}\right] \tag{3.16}
\end{equation*}
$$

Combining the above with the coupling of one RR, two tachyons and one gauge field of (2.5), one finds the following coupling:

$$
\begin{equation*}
-2 \alpha^{\prime} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{2}\right)^{n} H_{p} \wedge\left(\partial^{a} \partial_{a}\right)^{n}\left[\left(A^{(1)}-A^{(2)}\right) T T^{*}\right] \tag{3.17}
\end{equation*}
$$

This coupling reproduces exactly the second term in (3.12). The couplings in (3.16) are the higher derivative extension of the coupling in the first term in the third line of (1.8).

To examine the other terms in the string theory amplitude (3.11), consider the expansion of $(t+1 / 4) J$ around (3.3), i.e.,

$$
\begin{align*}
(t+1 / 4) J= & \frac{1}{2} \sqrt{2 \pi}\left(\frac{-1}{(s+1 / 4)(t+s+u+1 / 2)}+\frac{\sum_{n=0}^{\infty} a_{n}(s+t+u+1 / 2)^{n}}{(s+1 / 4)}\right. \tag{3.18}\\
& +\frac{\sum_{n, m=0}^{\infty} d_{n, m}(s+t+1 / 2)^{n}(t+1 / 4)^{m+1}(s+1 / 4)^{m}}{(t+s+u+1 / 2)} \\
& \left.+\sum_{p, n, m=0}^{\infty} e_{p, n, m}(s+t+u+1 / 2)^{p}(s+t+1 / 2)^{n}(t+1 / 4)^{m+1}(s+1 / 4)^{m}\right)
\end{align*}
$$

Replacing it in the amplitude (3.11), one finds that the first term of (3.18) is reproduced by the effective actions (1.3) and (1.8). The second term of (3.18) on the other hand should be reproduced by the following Feynman amplitude in field theory:

$$
\begin{equation*}
\mathcal{A}=V\left(C_{p-1}, T_{1}, T_{2}\right) G\left(T_{2}\right) V\left(T_{2}, T_{1}, A^{(1)}\right) \tag{3.19}
\end{equation*}
$$

where the propagator and the vertex $V\left(T_{2}, T_{1}, A^{(1)}\right)$ which have no higher derivative corrections are given by

$$
\begin{align*}
V\left(T_{2}, T_{1}, A^{(1)}\right) & =T_{p}\left(2 \pi \alpha^{\prime}\right)\left(k_{3}-k\right) \cdot \xi \\
G\left(T_{2}\right) & =\frac{i}{\left(2 \pi \alpha^{\prime}\right) T_{p}(s+1 / 4)} \tag{3.20}
\end{align*}
$$

and the vertex $V\left(C_{p-1}, T_{1}, T_{2}\right)$ should be derived from the higher derivative term (2.5), that is

$$
V\left(C_{p-1}, T_{1}, T_{2}\right)=\left(\alpha^{\prime}\right)^{2} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(-\frac{\alpha^{\prime}}{2} p^{a} p_{a}\right)^{n} \frac{1}{p!} \epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}} k_{2 a}
$$

where p^{a} is the momentum of the RR field. Replacing them in (3.19), one finds exact agreement with the second term in (3.18). Note that the tachyon appears in (3.19) as off-shell field, hence, this consistency indicates that the couplings in (2.5) have no on-shell ambiguity.

The sum of massless poles in the second line of (3.18) and the corresponding term when $k_{2} \leftrightarrow k_{3}$, and the massless pole in the second line of ($\overline{3.12}$) are

$$
\begin{align*}
& 4 i \mu_{p} \frac{\epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}}}{p!(s+t+u+1 / 2)}\left[k_{2 a}(t+1 / 4)\left(2 \xi . k_{3}\right)-\frac{1}{2} \xi_{a}(s+1 / 4)(t+1 / 4)+(1 \leftrightarrow 2)\right] \\
& \times \sum_{n, m=0}^{\infty} d_{n, m}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m} \tag{3.21}
\end{align*}
$$

This should be reproduced in field theory by the amplitude (3.14) in which the vertex $V_{a}\left(C_{p-1}, A\right)$ and the propagator $G_{a b}(A)$ are given in (3.15) and the vertex $V_{b}\left(A, A^{(1)}, T_{1}, T_{1}\right)$ should be derived from the the tachyon DBI action and its higher derivative extension in which we are not interested in this paper. In fact it has been checked in [22] that the $d_{0,0}$ term is reproduced by the tachyon DBI action.

Finally, the sum of the contact terms in the last line of (3.18) and the corresponding term when $k_{2} \leftrightarrow k_{3}$, and the last term in (3.12) are

$$
\begin{align*}
& 4 i \mu_{p} \frac{\epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}}}{p!}\left[k_{2 a}(t+1 / 4)\left(2 \xi . k_{3}\right)-\frac{1}{2} \xi_{a}(s+1 / 4)(t+1 / 4)+(1 \leftrightarrow 2)\right] \\
& \times \sum_{p, n, m=0}^{\infty} e_{p, n, m}(s+t+u+1 / 2)^{p}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m} \tag{3.22}
\end{align*}
$$

The field theory couplings corresponding to the above terms are

$$
\begin{array}{r}
2\left(\alpha^{\prime}\right)^{2} \mu_{p} \frac{\epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}}}{p!} \sum_{p, n, m=0}^{\infty} e_{p, n, m}(s+t+u+1 / 2)^{p}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m} \\
\times\left[\partial_{b} \partial_{c}\left(A^{(1)}-A^{(2)}\right)_{a} D^{b} T_{1} D^{c} T_{1}+2 D_{a} D_{b} T_{1} D_{c} T_{1} \partial^{b}\left(A^{(1)}-A^{(2)}\right)^{c}+T_{1} \rightarrow T_{2}\right]
\end{array}
$$

where our notation is such that

$$
\begin{align*}
((s+1 / 4)(t+1 / 4))^{m} H A T T & \rightarrow\left(\alpha^{\prime}\right)^{2 m} H \partial_{a_{1}} \cdots \partial_{a_{2 m}} A D^{a_{1}} \cdots D^{a_{m}} T D^{a_{m+1}} \cdots D^{a_{2 m}} T \\
(s+t+1 / 2)^{n} H A T T & \rightarrow\left(\alpha^{\prime}\right)^{n} H \partial^{a_{1}} \cdots \partial^{a_{n}} A D_{a_{1}} \cdots D_{a_{n}}(T T) \\
(s+t+u+1 / 2)^{p} H A T T & \rightarrow\left(\frac{\alpha^{\prime}}{2}\right)^{p} H\left(D_{a} D^{a}\right)^{p}(A T T) \tag{3.23}
\end{align*}
$$

Note that the above Lagrangian is invariant under gauge transformation. In terms of field strength, these higher derivative couplings are

$$
\begin{align*}
& 2\left(\alpha^{\prime}\right)^{2} \mu_{p} \sum_{p, n, m=0}^{\infty} e_{p, n, m}(s+t+u+1 / 2)^{p}(s+t+1 / 2)^{n}((t+1 / 4)(s+1 / 4))^{m} \\
& C_{p-1} \wedge\left[-\partial_{b} \partial_{c}\left(F^{(1)}-F^{(2)}\right) D^{b} T D^{c} T^{*}+2 D_{b} D T \wedge D_{c} D T^{*}\left(F^{(1)}-F^{(2)}\right)^{b c}+\right. \\
& \left.+\partial_{b}\left(F^{(1)}-F^{(2)}\right)_{c} \wedge D^{b} D T D^{c} T^{*}+\partial_{b}\left(F^{(1)}-F^{(2)}\right)_{c} \wedge D^{b} D T^{*} D^{c} T\right] \tag{3.24}
\end{align*}
$$

Our notation is that the fields without indexes are forms, e.g., $F_{c}^{(1)}$ is one form and $F^{(1)}$ is two form. The above couplings have on-shell ambiguity which can be fixed by studying the S-matrix element of one RR, two tachyons and two gauge fields in which the above couplings appear in the tachyonic pole of the amplitude. The above higher derivative couplings have at least four derivatives, so they are not extension of the couplings in (1.8). This ends our illustration of consistency between the expansion of the S-matrix element of one RR, two tachyons and one gauge field around (3.3) and the higher derivative couplings of the field theory.

4. Discussion

In this paper, we have shown that the expansion of the S-matrix element of one RR, two tachyons and one gauge field around (3.3) corresponds to higher derivative extension of the Wess-Zumino terms, i.e., the couplings (3.10), (3.16) and (3.24). Hence, one expects that the expansion (3.3) to be the low energy expansion. In fact, the expansion (3.3) in terms of momenta of the open string fields is

$$
\begin{equation*}
\alpha^{\prime} k_{1} \cdot k_{2} \rightarrow 0, \alpha^{\prime} k_{1} \cdot k_{3} \rightarrow 0, \alpha^{\prime}\left(k_{2}+k_{3}\right)^{2} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

The low energy expansion of the amplitude (2.1) is also around

$$
\begin{equation*}
\alpha^{\prime}\left(k+k^{\prime}\right)^{2} \rightarrow 0 \tag{4.2}
\end{equation*}
$$

To find a general rule for the derivative expansion of any S-matrix element involving tachyon, let us examine the expansion of some other S-matrix elements. The derivative expansion of the S-matrix element of two gauge fields and two tachyons has been proposed in 25 to be around

$$
\begin{equation*}
\alpha^{\prime} k_{1} \cdot k_{2} \rightarrow 0, \alpha^{\prime} k_{1} \cdot k_{3} \rightarrow 0, \alpha^{\prime} k_{2} \cdot k_{3} \rightarrow 0 \tag{4.3}
\end{equation*}
$$

where k_{1} is momentum of tachyon and k_{2}, k_{3} are the momenta of the gauge fields. The derivative expansion of the S-matrix element of four tachyons has been proposed in 25]. The amplitude has different Chan-Paton factors. The one which has the factor $\operatorname{Tr}\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)$ should be expanded around

$$
\begin{aligned}
& \left(\alpha^{\prime}\left(k_{1}+k_{2}\right)^{2}, \alpha^{\prime} k_{2} \cdot k_{3}, \alpha^{\prime} k_{1} \cdot k_{3}\right)
\end{aligned} \rightarrow 0
$$

The first line produce s-channel, the second line produce u-channel and the last one produce the t-channel. The derivative expansion of the S -matrix element of four tachyons and one gauge field has been proposed in 26]. The amplitude has different Chan-Paton factors and different factors of $k_{1} \cdot \zeta_{5}, k_{2} \cdot \zeta_{5}$ and $k_{3} \cdot \zeta_{5}$ where ζ_{5} is the polarization of the gauge field. The one which has the factor $\operatorname{Tr}\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5}\right) k_{1} \cdot \zeta_{5}$ should be expanded around

$$
\begin{aligned}
\left(\alpha^{\prime}\left(k_{1}+k_{2}\right)^{2}, \alpha^{\prime}\left(k_{3}+k_{4}\right)^{2}, \alpha^{\prime} k_{2} \cdot k_{3}, \alpha^{\prime} k_{1} \cdot k_{5}, \alpha^{\prime} k_{4} \cdot k_{5}\right) & \rightarrow 0 \\
-\left(\alpha^{\prime} k_{1} \cdot k_{2}, \alpha^{\prime} k_{3} \cdot k_{4}, \alpha^{\prime} k_{2} \cdot k_{3}, \alpha^{\prime} k_{1} \cdot k_{5}, \alpha^{\prime} k_{4} \cdot k_{5}\right) & \rightarrow 0 \\
+\left(\alpha^{\prime}\left(k_{2}+k_{3}\right)^{2}, \alpha^{\prime} k_{3} \cdot k_{4}, \alpha^{\prime} k_{2} \cdot k_{3}, \alpha^{\prime} k_{1} \cdot k_{5}, \alpha^{\prime} k_{4} \cdot k_{5}\right) & \rightarrow 0
\end{aligned}
$$

Let us compare the above expansions with the derivative expansion of the S-matrix elements involving only massless fields. The low energy expansion in this case is trivial, i.e., expansion around $\alpha^{\prime} k_{i} \cdot k_{j} \rightarrow 0$ which is equivalent to the expansion around $\alpha^{\prime}\left(k_{i}+k_{j}\right)^{2} \rightarrow 0$. However, for tachyon the expansion around $\alpha^{\prime} k_{i} \cdot k_{j} \rightarrow 0$ is not equivalent to the expansion around $\alpha^{\prime}\left(k_{i}+k_{j}\right)^{2} \rightarrow 0$. For example, the expansion of amplitude (2.1) around $\alpha^{\prime} k \cdot k^{\prime} \rightarrow 0$ does not produce the massless pole of field theory, hence, that expansion would not be correspond to the effective field theory of brane-anti-brane system. In general, the derivative expansion of a tachyon amplitude should be an expansion around $\alpha^{\prime} k_{i} \cdot k_{j} \rightarrow 0$ or $\alpha^{\prime}\left(k_{i}+k_{j}\right)^{2} \rightarrow 0$ or a combination of them for each i, j. The nontrivial question of finding the derivative expansion of a tachyon amplitude in then correspond to fixing this ambiguity.

The above expansions of the tachyon amplitudes are then the expansions in terms of power of momenta of the external states, i.e., α^{\prime} expansions. Hence, one expects that they should be correspond to the derivative expansions of the field theory. In particular, expansion of the S-matrix element of two tachyons and two gauge fields around (4.3) should be correspond to the higher derivative coupling of two tachyons and two gauge fields. These higher derivative couplings on the other hand can be used to find the vertex $V_{b}\left(A, A^{(1)}, T_{1}, T_{1}\right)$ in the amplitude (3.14) to produce the massless pole in (3.21). We leave the details of that calculation for the future works, we note here however that the constants $d_{n, m}$ that appear in the amplitude (3.21) have the same structure as the coefficients of expansion of the S-matrix element of two gauge fields and two tachyons 25 expanded around (4.3), in particular they do not have $\ln (2)^{\prime} s$.

The above rule for expanding the open string tachyon amplitude should be hold even for closed string tachyon amplitude. The expansion of the sphere level S-matrix element
of two gravitons and two closed string tachyons in type 0 theory has been proposed in 27 to be around

$$
\alpha^{\prime}\left(p_{3}+p_{4}\right) \rightarrow 0, \alpha^{\prime} p_{1} \cdot p_{4} \rightarrow 0, \alpha^{\prime} p_{2} \cdot p_{4} \rightarrow 0
$$

where p_{1}, p_{2} are the graviton momenta and p_{3}, p_{4} are the tachyon momenta. The expansion of the S -matrix element of four closed string tachyons in type 0 theory has been proposed in 27 to be around

$$
\begin{align*}
& \frac{1}{3}\left(\left[\alpha^{\prime}\left(p_{3}+p_{4}\right), \alpha^{\prime} p_{1} \cdot p_{4}, \alpha^{\prime} p_{2} \cdot p_{4}\right] \rightarrow 0\right. \\
& \quad+\left[\alpha^{\prime}\left(p_{1}+p_{4}\right), \alpha^{\prime} p_{3} \cdot p_{4}, \alpha^{\prime} p_{2} \cdot p_{4}\right] \rightarrow 0 \\
& \left.\quad+\left[\alpha^{\prime}\left(p_{2}+p_{4}\right), \alpha^{\prime} p_{3} \cdot p_{4}, \alpha^{\prime} p_{1} \cdot p_{4}\right] \rightarrow 0\right) \tag{4.4}
\end{align*}
$$

which correspond to s-, t - and u-channels.
The strategy for finding the above expansions in 27 was to find an expansion whose leading order terms are reproduced exactly by the effective action of type 0 theory which includes a covariant tachyon kinetic term. The above expansions are unique which are expected to be the derivative expansion of their corresponding amplitudes. Using the strategy in 27] for finding the expansion of the S-matrix element of two RR and two tachyons, one finds various expansions which are consistent with the effective field theory. Three expansions has been examined in 27. However, neither of them is consistent with the above rule for the derivative expansion. A derivative expansion which is consistent also with the effective action of type 0 is $(s \rightarrow 0, t, u \rightarrow-1) / 2+(s \rightarrow-2, t, u \rightarrow 0) / 2$ which in terms of momentum is

$$
\begin{align*}
& \frac{1}{2}\left(\left[\alpha^{\prime}\left(p_{3}+p_{4}\right), \alpha^{\prime} p_{1} \cdot p_{4}, \alpha^{\prime} p_{2} \cdot p_{4}\right]\right. \rightarrow 0 \\
&\left.+\left[\alpha^{\prime}\left(p_{1}+p_{4}\right), \alpha^{\prime}\left(p_{2}+p_{4}\right), \alpha^{\prime} p_{3} \cdot p_{4},\right] \rightarrow 0\right) \tag{4.5}
\end{align*}
$$

The expansion of the amplitude around this point is

$$
\begin{equation*}
A(C, C, T, T) \sim \pi \alpha\left(-\frac{2}{s}-\frac{2}{t}-\frac{2}{u}+4 \ln (2)+\cdots\right) \tag{4.6}
\end{equation*}
$$

where α is a factor which has four momenta. The above expansion is consistent with the effective action of type 0 theory and fixes the function $f(T)$ that multiply the kinetic term of the RR fields to be

$$
f(T)=1+T+\frac{1}{2} T^{2}
$$

which is the one that has been found in [28].
The tachyon couplings (2.5) appear as tachyonic pole and the contact terms of string theory S-matrix element (3.1) with exactly correct coefficients. The sum of these two terms is gauge invariant. We have interpreted this as an indication that the couplings in (2.5)
have no on-shell ambiguity. To elaborate this point, consider, as an example, the following couplings:

$$
\begin{equation*}
2 i \alpha^{\prime} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{2}\right)^{n}\left(-2 \alpha^{\prime}\right)^{2} C_{p-1} \wedge\left(D^{a} D_{a}\right)^{n}\left(D D_{\alpha} D^{\alpha} T \wedge D D_{\beta} D^{\beta} T^{*}\right) \tag{4.7}
\end{equation*}
$$

which is equivalent to (2.5) for on-shell tachyon. If one considers the above couplings instead of the couplings (2.5), one would find the contact terms in the second term in (3.12) after combining them with the couplings in (3.16). The above couplings produce also the tachyonic pole (3.19) in which the vertex $V\left(C_{p-1}, T_{1}, T_{2}\right)$ is

$$
V\left(C_{p-1}, T_{1}, T_{2}\right)=\left(\alpha^{\prime}\right)^{2} \mu_{p} \sum_{n=0}^{\infty} a_{n}\left(-\frac{\alpha^{\prime}}{2} p^{a} p_{a}\right)^{n} \frac{1}{p!} \epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}} k_{2 a}\left(2 \alpha^{\prime} k^{2}\right)
$$

where $k=k_{1}+k_{3}$ is the momentum of the off-shell tachyon. If one replaces it into (3.19), one finds an extra factor of $\left(2 \alpha^{\prime} k^{2}\right)$ in the tachyonic pole. However, one can write it as

$$
2 \alpha^{\prime} k^{2}=-4 s=1-4\left(s+\frac{1}{4}\right)
$$

the first term gives exactly the tachyonic pole which is also produced by (2.5). When combining it with the above contact terms one finds a combination which is gauge invariant. The second term on the other hand gives an extra contact term. The resulting contact terms are

$$
\begin{equation*}
\epsilon^{a_{0} \cdots a_{p-1} a} H_{a_{0} \cdots a_{p-1}} \sum_{n=0}^{\infty} a_{n}(s+t+u+1 / 2)^{n}\left(\xi \cdot k_{3} k_{2 a}+\xi \cdot k_{2} k_{3 a}\right) \tag{4.8}
\end{equation*}
$$

Obviously it does not satisfy the Ward identity, so it can not be reproduced by a gauge invariant coupling in field theory. Therefore, one would find inconsistency between field theory and string theory S-matrix element if one considers the couplings (4.7) instead of the couplings (2.5). We expect a similar idea should hold for all other tachyon couplings. In other words, the S-matrix method in principle may have the potential to produce all tachyon couplings without on-shell ambiguity.

Acknowledgments

I would like to thank A. Ghodsi for discussion.

References

[1] M. Gutperle and A. Strominger, Spacelike branes, JHEP 04 (2002) 018 hep-th/0202210;
A. Sen, Rolling tachyon, JHEP 04 (2002) 048 hep-th/0203211.
[2] A. Sen, Tachyon matter, JHEP 07 (2002) 065 hep-th/0203265.
[3] A. Sen, Field theory of tachyon matter, Mod. Phys. Lett. A 17 (2002) 1797 hep-th/0204143].
[4] A. Sen, Time evolution in open string theory, JHEP 10 (2002) 003 hep-th/0207105;
P. Mukhopadhyay and A. Sen, Decay of unstable D-branes with electric field, JHEP 11 (2002) 047 hep-th/0208142;
A. Strominger, Open string creation by S-branes, hep-th/0209090;
F. Larsen, A. Naqvi and S. Terashima, Rolling tachyons and decaying branes, JHEP 02 (2003) 039 hep-th/0212248;
M. Gutperle and A. Strominger, Timelike boundary Liouville theory, Phys. Rev. D 67 (2003) 126002 hep-th/0301038;
A. Maloney, A. Strominger and X. Yin, S-brane thermodynamics, JHEP 10 (2003) 048 hep-th/0302146;
T. Okuda and S. Sugimoto, Coupling of rolling tachyon to closed strings, Nucl. Phys. B 647 (2002) 101 hep-th/0208196;
S.-J. Rey and S. Sugimoto, Rolling tachyon with electric and magnetic fields: T-duality approach, Phys. Rev. D 67 (2003) 086008 hep-th/0301049;
S.-J. Rey and S. Sugimoto, Rolling of modulated tachyon with gauge flux and emergent fundamental string, Phys. Rev. D 68 (2003) 026003 hep-th/0303133.
[5] N.D. Lambert, H. Liu and J.M. Maldacena, Closed strings from decaying D-branes, JHEP 03 (2007) 014 hep-th/0303139.
[6] A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 hep-th/0410103.
[7] A. Sen, Supersymmetric world-volume action for non-BPS D-branes, JHEP 10 (1999) 008 hep-th/9909062.
[8] M.R. Garousi, Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action, Nucl. Phys. B 584 (2000) 284 hep-th/0003122.
[9] E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, T-duality and actions for non-BPS D-branes, JHEP 05 (2000) 009 hep-th/0003221.
[10] J. Kluson, Proposal for non-BPS D-brane action, Phys. Rev. D 62 (2000) 126003 hep-th/0004106.
[11] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 hep-th/0702155.
[12] O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 arXiv:0708.2839.
[13] A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking, arXiv:0708.3233.
[14] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 hep-th/0412141; More on a holographic dual of $Q C D$, Prog. Theor. Phys. 114 (2006) 1083 hep-th/0507073.
[15] A. Sen, Stable non-BPS bound states of BPS D-branes, JHEP 08 (1998) 010 hep-th/9805019;
S.P. de Alwis, Tachyon condensation in rotated brane configurations, Phys. Lett. B 461 (1999) 329 hep-th/9905080.
[16] M.R. Garousi, D-brane anti-D-brane effective action and brane interaction in open string channel, JHEP 01 (2005) 029 hep-th/0411222.
[17] M.R. Garousi, On the effective action of D-brane-anti-D-brane system, JHEP 12 (2007) 089 arXiv:0710.5469.
[18] D. Kutasov, M. Mariño and G.W. Moore, Remarks on tachyon condensation in superstring field theory, hep-th/0010108;
M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. and Quant. Grav. 14 (1997) 47 hep-th/9605033.
[19] C. Kennedy and A. Wilkins, Ramond-Ramond couplings on brane-antibrane systems, Phys. Lett. B 464 (1999) 206 hep-th/9905195.
[20] P. Kraus and F. Larsen, Boundary string field theory of the DD-bar system, Phys. Rev. D 63 (2001) 106004 hep-th/0012198.
[21] T. Takayanagi, S. Terashima and T. Uesugi, Brane-antibrane action from boundary string field theory, JHEP 03 (2001) 019 hep-th/0012210.
[22] M.R. Garousi and E. Hatefi, On Wess-Zumino terms of brane-antibrane systems, arXiv:0710.5875.
[23] A. Hashimoto and I.R. Klebanov, Decay of excited D-branes, Phys. Lett. B 381 (1996) 437 hep-th/9604065.
[24] M.R. Garousi and R.C. Myers, World-volume interactions on D-branes, Nucl. Phys. B 542 (1999) 73 hep-th/9809100.
[25] M.R. Garousi, On-shell S-matrix and tachyonic effective actions, Nucl. Phys. B 647 (2002) 117 hep-th/0209068; S-matrix elements and off-shell tachyon action with non- Abelian gauge symmetry, JHEP 12 (2003) 036 hep-th/0307197.
[26] K. Bitaghsir-Fadafan and M.R. Garousi, Non-abelian expansion of S-matrix elements and non-abelian tachyon DBI action, Nucl. Phys. B 760 (2007) 197 hep-th/0607249.
[27] M.R. Garousi, S-matrix elements and closed string tachyon couplings in type 0 theory, Nucl. Phys. B 705 (2005) 212 hep-th/0309028.
[28] I.R. Klebanov and A.A. Tseytlin, D-branes and dual gauge theories in type 0 strings, Nucl. Phys. B 546 (1999) 155 hep-th/9811035.
[29] M.R. Garousi, Higher derivative corrections to Wess-Zumino action of brane-antibrane systems, arXiv:0712.1954.

